Bioengineered 'golden' indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems.
نویسندگان
چکیده
Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.
منابع مشابه
Why is golden rice golden (yellow) instead of red?
The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the tr...
متن کاملNpgRJ_Nbt_1082 1..6
‘Golden Rice’ is a variety of rice engineered to produce bcarotene (pro-vitamin A) to help combat vitamin A deficiency1, and it has been predicted that its contribution to alleviating vitamin A deficiency would be substantially improved through even higher b-carotene content2. We hypothesized that the daffodil gene encoding phytoene synthase (psy), one of the two genes used to develop Golden Ri...
متن کاملPotential health benefits of Golden Rice: a Philippine case study
Golden Rice has been genetically modified to produce beta-carotene in the endosperm of grain. It could improve the vitamin A status of deficient food consumers, especially women and children in developing countries. This paper analyses potential impacts in a Philippine context. Since the technology is still at the stage of R&D, benefits are simulated with a scenario approach. Health effects are...
متن کاملStudies on improved Agrobacterium-mediated transformation in two indica rice (Oryza sativa L.)
Agrobacterium tumefaciens strain EHA 105 carrying binary vector pCAMBIA 1301 was used for transformation in two economically important highly recalcitrant indica rice cultivars HKR-46 and HKR126. High concentrations of acetosyringone in the Agrobacterium culture and co-cultivation medium proved to be indispensable for successful transformation. Embryogenic scutellar calli were used for transfor...
متن کاملGolden Rice is an effective source of vitamin A.
BACKGROUND Genetically engineered "Golden Rice" contains up to 35 microg beta-carotene per gram of rice. It is important to determine the vitamin A equivalency of Golden Rice beta-carotene to project the potential effect of this biofortified grain in rice-consuming populations that commonly exhibit low vitamin A status. OBJECTIVE The objective was to determine the vitamin A value of intrinsic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant biotechnology journal
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2003